Statistical Inferences for Functional Data

Jin-Ting Zhang
Department of Statistics
National University of Singapore

July 20, 2004

Joint work with Dr. Jianwei Chen, Univ. of Rochester
OUTLINE

- **Introduction**
 - The Motivation Data
 - Nonparametric Mixed-Effects Model
 - Existing Approaches

- **Estimation**
 - Reconstructing the Individual Functions
 - Estimation of the Mean and Covariance Functions
 - Estimation of the Noise Variance Function
 - Bandwidth Selection

- **Hypothesis Testing**
 - Test about a Specific Mean Function
 - Polynomial Goodness of Fit Test
 - Implementation of the Test Procedures

- **Simulation Study**

- **A Real Data Example**
1 Introduction

1.1 The Motivation Data

![Graphs showing Raw Data and Pointwise Means](image)

Figure 1: Raw curves of the nonconceptive group of the progesterone data (Brumback & Rice 1998)

- Consist of a sample of \(n = 69 \) urinary metabolite progesterone curves (Munro et al. 1991) of women’s menstrual cycles.
- Scheduled design time points: 24 and Missing rate: 10.02%
1.2 Nonparametric Mixed-Effects Model

A NPME Model shall be used to model the above curve data:

\[y_{ij} = \eta(t_{ij}) + v_i(t_{ij}) + \epsilon_i(t_{ij}), \ j = 1, \ldots, n_i, \ i = 1, \ldots, n \]

- **Overall mean function** (Fixed Effects): \(\eta(t) \)
- **Subject effects** (Random Effects): \(v_i(t) \sim SP(0, \gamma) \)

- **\(i \)-th individual curve:** \(f_i(t) = E[y_i(t)|v_i(t)] = \eta(t) + v_i(t) \)
- **Uncorrelated measurements errors:** \(\epsilon_i(t) \sim SP(0, \sigma^2(t)) \)
- \(n_i \) are **quite large**, often much larger than \(n \)
- \(t \in \mathcal{T} = [a, b], \ -\infty < a < b < \infty. \)
Targets of Interest:

- Estimate the Overall Mean $\eta(t)$ of the curves
- Estimate each of the individual curves $f_i(t)$
- Estimate the Covariance Structure $\gamma(s, t)$ of the individual curves
- Hypothesis tests about the Overall Mean Curve
 - Test H_0: $\eta(t) = 0$ (No effect test)
 - Test H_0: $\eta(t)$ is a polynomial
 (Polynomial goodness of fit test)
1.3 Existing Approaches

Most of the existing approaches focus on estimation of $\eta(t)$ and PCA of $\gamma(s,t)$, involving one smoother or another.

- **Local Polynomial Smoothing** (Fan & Zhang 2000)

- **Basis-based Approaches** (Ramsay and Silverman 1997)

- **Reproducing kernel Hilbert spline basis** (Ramsay 1986 among others)
Work on Hypothesis Tests about $\eta(t)$.

- **Pointwise t-test/F-test** (Ramsay and Silverman 1997, 2000)
 - **Main Idea**: at each time point, Conduct a t-test/F-test
 - **Advantage**: Simple to understand, easy to implement
 - **Drawback**: Overall Test Result NOT available

- **Adaptive Neyman Test** (Fan and Lin 1998)
 - **Main Idea**: Apply the Adaptive Neyman Test of Fan (1996) to the Fourier Coefficients of the curve data
 - **Advantage**: Powerful
 - **Drawback**: Only for curve data yielded from Gaussian white noise process or stationary Gaussian process
• **Methodologies of the current talk**

 – Reconstructing $f_i(t), i = 1, 2, \cdots, n$ using Local Polynomial Smoothing
 – Estimation of $\eta(t), \gamma(s, t), \sigma^2(t)$ based on the Reconstructions
 – Hypothesis Tests about $\eta(t)$ based on the Reconstructions
 – Theoretical Analysis of the **Estimators** and **Test Statistics**
2 Estimation

2.1 Reconstruction of the Individual Curves

The Approach

- Based on *i*-th Individual measurements \((t_{ij}, y_{ij})\)
- Use the usual **Nonpar. Regr. Model**: \(y_i(t_{ij}) = f_i(t_{ij}) + \epsilon_{ij}\),
- Target at the **Individual function** \(f_i(t) = \eta(t) + v_i(t)\)
- Use **Local Polynomial Smoothing** (Fan and Gijbels 1996)
 - \(p\)-th order polynomial Taylor expansion at \(t_0\):
 \[f_i(t) \approx f_i(t_0) + (t - t_0)f_i^{(1)}(t_0) + \cdots + (t - t_0)^p f_i^{(p)}(t_0)/p! , \]
 - Weighted Least Squares Estimation: \(K\)-kernel, \(h_i\)-bandwidth
 \[\sum_{j=1}^{n_i} \left\{ y_{ij} - \sum_{r=0}^{p} (t_{ij} - t_0)^r \beta_r \right\}^2 K_{h_i}(t_{ij} - t_0), \]
 - Reconstruction at \(t_0\): \(\hat{f}_i(t_0) = \hat{\beta}_0\).
Theorem 1 Under some regularization conditions, and in particular when there are two positive constants C_0 and δ_0 such that
\[n_i \geq C_0 n^{\delta_0}, \; i = 1, 2, \cdots, n. \]

Then for the $\hat{f}_i(t)$ using the individual optimal bandwidths, we have
\[\hat{f}_i(t) = f_i(t) + n^{-\delta} O_P(1), \; i = 1, 2, \cdots, n, \]
where $O_P(1)$ is uniform for any t within the interior of T and all
\[i = 1, 2, \cdots, n, \text{ and } \delta = \begin{cases} \frac{p+1}{2p+3} \delta_0, & \text{as } p \text{ odd,} \\ \frac{p+2}{2p+5} \delta_0, & \text{as } p \text{ even.} \end{cases} \]

Remarks

- Reconstruct $\hat{f}_i(t) \approx f_i(t), i = 1, 2, \cdots, n$ provided that $n_i \to \infty$ slightly faster than n.

- **Often require** $\delta > 1/2$. To make this satisfied, need
\[\delta_0 > \begin{cases} 1 + 1/(2p + 2), & \text{as } p \text{ odd,} \\ 1 + 1/(2p + 4), & \text{as } p \text{ even.} \end{cases} \]
when $p = 0$ or 1, need $\delta_0 > 5/4$.

- **For Functional Data**, the above condition is easy to satisfy.
2.2 Estimation of the Mean and Covariance Functions

- **Proposed Estimators** using the reconstructions \(\hat{f}_i(t) \):
 \[
 \hat{\eta}(t) = n^{-1} \sum_{i=1}^{n} \hat{f}_i(t) \quad \hat{\gamma}(s, t) = n^{-1} \sum_{i=1}^{n} \left\{ \hat{f}_i(s) - \hat{\eta}(s) \right\} \left\{ \hat{f}_i(t) - \hat{\eta}(t) \right\} .
 \]
 - **Advantage**: Simple, Natural and Computatable

- **Ideal Estimators** using the true individuals \(f_i(t) \):
 \[
 \tilde{\eta}(t) = n^{-1} \sum_{i=1}^{n} f_i(t) , \quad \tilde{\gamma}(s, t) = n^{-1} \sum_{i=1}^{n} \left\{ f_i(s) - \tilde{\eta}(s) \right\} \left\{ f_i(t) - \tilde{\eta}(t) \right\} .
 \]
 - **Drawback**: Not Computatable

Shall Show that under some regular conditions,

Proposed Estimators \(\approx \) Ideal Estimators.
Theorem 2 Under the conditions of Theorem 1, we have
\[\hat{\eta}(t) = \tilde{\eta}(t) + n^{-\delta} O_P(1), \quad \hat{\gamma}(s,t) = \tilde{\gamma}(s,t) + n^{-\delta} O_P(1), \]
where \(O_P(1) \) is uniform for all the interior points of \(T \). In addition, assume \(\delta > 1/2 \). Then as \(n \to \infty \), we have
\[n^{1/2} \{ \hat{\eta}(t) - \eta(t) \} \sim AGP(0, \gamma), \quad n^{1/2} \{ \hat{\gamma}(s,t) - \gamma(s,t) \} \sim AGP(0, \gamma_*), \]
where
- \(AGP(\eta, \gamma) \)—asymptotical Gaussian process with mean function \(\eta(t) \) and covariance function \(\gamma(s,t) \),
- \(\gamma_* \{(s_1, t_1), (s_2, t_2)\} = E \{ v_1(s_1)v_1(t_1)v_1(s_2)v_1(t_2) \} - \gamma(s_1, t_1)\gamma(s_2, t_2), \)
- \(v_1(t) \)—the subject effect of \(f_1(t) \); when \(v_1(t) \) is Gaussian,
 \[\gamma_* \{(s_1, t_1), (s_2, t_2)\} = \gamma(s_1, t_2)\gamma(s_2, t_1) + \gamma(s_1, s_2)\gamma(t_1, t_2). \]
2.3 Estimation of the Noise Variance Function

- Use the individual residuals \(\hat{e}_{ij} = y_{ij} - \hat{f}_i(t_{ij}) \).

- Use kernel estimator

\[
\hat{\sigma}^2(t) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n_i} K_h(t_{ij} - t) \hat{e}_{ij}^2}{\sum_{i=1}^{n} \sum_{j=1}^{n_i} K_h(t_{ij} - t)}.
\]

- Kernel \(K \) and bandwidth \(h \) MAY different from those for \(\hat{f}_i(t) \).

- \(N = \sum_{i=1}^{n} n_i \): total number of the measurements.

Theorem 3 Assume the conditions for Theorem 1 are satisfied. In addition, assume a bandwidth \(h = O(N^{-1/5}) \) is used for \(\hat{\sigma}^2(t) \). Then as \(n \to \infty \)

\[
\hat{\sigma}^2(t) = \sigma^2(t) + n^{-\delta}O_P(1),
\]

where \(O_P(1) \) is uniform for all the interior points of \(\mathcal{T} \).
2.4 Bandwidth Selection

- **Pooled Bandwidth Method:** h_{pool}
 Select the bandwidth from the pooled functional data using usual bandwidth selector such as GCV.

- **Individual Bandwidth Method:** h_i
 Select an individual bandwidth per subject using usual bandwidth selector such as GCV.

- **Subject-out Bandwidth Method:** h_{SCV}
 Select the bandwidth using the one-subject-out cross-validation (Rice and Silverman 1991).

- **Generally** $h_{\text{SCV}} < h_{\text{pool}} < h_i$.
3 Hypothesis Tests about the Mean Function

3.1 Test about a Specific Mean Function

- **The Testing Problem:**
 \[H_0 : \eta(t) = \eta_0(t) \text{ for any } t, \]

 - **"No Effect" Test** when \(\eta_0(t) \equiv 0, \)
 - **Pairwise tests** easily transformed into "no effect" tests.

- **Proposed Test Statistic:** \(L_2 \)-norm based
 \[T_n = n \| \hat{\eta} - \eta_0 \|^2 = n \int \{ \hat{\eta}(t) - \eta_0(t) \}^2 \, dt. \]

- **Ideal Test Statistic:** assume \(f_i(t), i = 1, 2, \ldots, n \) known
 \[T_{n,0} = n \| \hat{\eta} - \eta_0 \|^2 = n \int \{ \hat{\eta}(t) - \eta_0(t) \}^2 \, dt, \]
Theorem 4 Assume the conditions of Theorem 1 are satisfied. In addition, assume γ has a finite trace. Then as $n \to \infty$, we have

- $T_n = T_{n,0} + n^{-(\delta-1/2)}O_P(1)$.
- $T_{n,0} \overset{d}{=} \sum_{r=1}^{\infty} \lambda_r A_r + o_P(1), \quad A_r \sim \chi_{1}^2(nu_r^2/\lambda_r)$.
- In addition, when $\delta > 1/2$,

$$T_n \overset{d}{=} \sum_{r=1}^{\infty} \lambda_r A_r + o_P(1).$$

where

- $u_r = \int (\eta(t) - \eta_0(t))\phi_r(t)dt, r = 1, 2, \ldots$,
- $\lambda_r, r = 1, 2, \ldots$ — eigenvalues of γ,
- $\phi_r(t), r = 1, 2, \ldots$ — eigen functions of γ.

16
3.2 Polynomial Goodness of Fit Test

- **Polynomial Goodness of Fit Test:**
 \[H_0 : \eta(t) = \Psi_m(t)^T \beta \text{ for some } \beta, \quad \Psi_m(t) = (1, t, t^2, \ldots, t^m)^T. \]

- **Examples:** No-effect Test \((m = 0)\)/ Linearity Test \((m = 1)\)/ Quadratic Test \((m = 2)\)

- **Least Squares Estimation** of \(\beta\)
 - Minimize \(\sum_{i=1}^{n} \int \left(\hat{y}_i(t) - \Psi_m(t)^T \beta \right)^2 dt\)
 - The Solution
 \[
 \hat{\beta} = \left\{ \int \Psi_m(t)\Psi_m(t)^T dt \right\}^{-1} \int \Psi_m(t)\hat{\eta}(t)dt = \int w(t)\hat{\eta}(t)dt,
 \]
 where \(w(t) = \left(\int \Psi_m(u)\Psi_m(u)^T du \right)^{-1} \Psi_m(t)\).
Proposed Test Statistic:

\[D_n = n \int \left\{ \hat{\eta}(t) - \Psi_m(t)^T \hat{\beta} \right\}^2 dt = n \int d_n^2(t) dt, \]

where \(d_n(t) = \hat{\eta}(t) - \Psi_m(t)^T \hat{\beta} \).

Asymptotic Property of \(d_n(t) \):

Theorem 5 Assume the conditions of Theorem 4 are satisfied. Then as \(n \to \infty \),

\[n^{1/2} [d_n(t) - d(t)] \sim AGP(0, \gamma_d), \]

where

- \(\gamma_d(s, t) = \sum_{r=1}^{\infty} \lambda_r d_r(s)d_r(t) \),
- \(d(t) = \eta(t) - \Psi_m(t)^T \int w(u)\eta(u)du \),
- \(d_r(t) = \phi_r(t) - \Psi_m(t)^T \int w(u)\phi_r(u)du \),
- \([\lambda_r, \phi_r(t)], r = 1, 2, \ldots — eigenvalues/eigenfunctions of \gamma \),
Asymptotic Random Expression of D_n:

Theorem 6 Assume the conditions in Theorem 1 are satisfied. In addition, assume $\gamma_d(s,t)$ has a finite trace. Then

$$D_n \xrightarrow{d} \sum_{r=1}^{\infty} \tau_r A_r + n^{-(\delta-1/2)}O_P(1),$$

where

- $A_r \sim \chi^2_{1}(nu_r^2/\tau_r)$, independent of each other,
- $u_r = \int [d_n(t) - d(t)]\psi_r(t)dt$,
- $[\tau_r, \psi_r(t)], r = 1, 2, \cdots$—eigenvalues/eigenfunctions of γ_d.

3.3 Implementation of the Testing Procedures

- **Remarks and Challenge**
 - Test statistics T_n and D_n are \(\chi^2 \)-type mixtures
 - Under H_0, the noncentral parameters u_r are 0
 - Eigenvalues and eigenfunctions of γ or γ_d **Unknown**

- **Implementation**
 - **Replace the Unknowns by their Estimates**
 - **Use \(\chi^2 \)-approximation** for the resulting test statistics; see Buckley and Eagleson (1988)
 Ramil-Novos and Gonzalez-Manteiga (1998)
 Zhang (2004)
4 Simulation Study

- **Aim:** Compare the Bandwidth Selection Methods via comparing
 - the resulting bandwidths
 - the associated subject-out CV scores
 - the MSE for estimating $\eta(t)$:
 \[
 \text{MSE}_\eta = M^{-1} \sum_{j=1}^{M} [\eta(\tau_j) - \hat{\eta}(\tau_j)]^2
 \]
 - the MSE for estimating $f_i(t), i = 1, 2, \ldots, n$:
 \[
 \text{MSE}_f = (nM)^{-1} \sum_{i=1}^{n} \sum_{j=1}^{M} \left\{ \hat{f}_i(\tau_j) - f_i(\tau_j) \right\}^2
 \]
 where τ_1, \ldots, τ_M equally-spaced in $[0, 1]$, for some M large.
• **Simulation Model:**

\[y_i(t) = \eta(t) + v_i(t) + \epsilon_i(t), \]
\[\eta(t) = a_0 + a_1 \phi_1(t) + a_2 \phi_2(t), \]
\[v_i(t) = b_{i0} + b_{i1} \psi_1(t) + b_{i2} \psi_2(t), \]
\[b_i = [b_{i0}, b_{i1}, b_{i2}]^T \sim N[0, \text{diag}(\sigma_0^2, \sigma_1^2, \sigma_2^2)], \]
\[\epsilon_i(t) \sim N[0, \sigma^2(1 + t)], \quad i = 1, 2, \cdots, n, \]

- \(b_i \) and \(\epsilon_i(t) \) are independent
- Scheduled time points \(t_j = j/(m + 1), j = 1, 2, \cdots, m \)
- Randomly remove some responses at a rate \(r_{\text{min}} \) to yield unbalance design

• **Simulation Parameters Used:**

- \([a_0, a_1, a_2] = [1.2, 2.3, 4.2], \quad [\sigma_0^2, \sigma_1^2, \sigma_2^2, \sigma^2] = [1, 2, 3, .5]\)
- \(\phi_1(t) = \psi_1(t) = \cos(2\pi t), \phi_2(t) = \psi_2(t) = \sin(2\pi t) \)
- \(r_{\text{min}} = 10\%, [n, m] = [20, 40], M = 400.\)
Figure 2: *Simulation results.*

Simulation Results

- Panel (a) h_i (C2) > h_{pool} (C1) > h_{SCV} (C3) for 200 simulations;
- Panel (b) One-subject-out CV scores associated with 3 methods;
- Panel (c) MSE$_{\eta}$ values for 3 methods, and the method using $\hat{\eta}(t)$;
- Panel (d) MSE$_{f}$ values for 3 methods.
- Overall, **Ind. Bandwidths Preferred** for $\hat{\eta}(t)$ and $\hat{f}_i(t)$.
A Real Data Example

![Graphs showing reconstructed curves, mean ±2 stddev bands, covariance function, and noise variance function.](image)

Figure 3: *FDA of the Nonconceptive Progesterone data.*

- **Estimation**
 - Panel (a), \(\hat{f}_i(t) \) by a loc. lin. smoother using ind. bandwidths;
 - Panel (b), \(\hat{\eta}(t) \) based on the reconstructions;
 - Panel (c), \(\hat{\gamma}(s, t) \) based on the reconstructions;
 - Panel (d), \(\hat{\sigma}^2(t) \) by loc. const. kernel smoother using \(h_{GCV} \).
Hypothesis Tests

- $\eta(t)$ definitely not constant or linear
- Quadratic, cubic or quartic tests Rejected with Pvalue 0
- No-effect Test for the residuals after $\hat{\eta}(t)$ removed Accepted with Pvalue 1.

Thank You